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NN­CH2-substituted L-alanine methyl ester (NNCH2­L-
Ala­OMe) and ¢-alanine ethyl ester (NNCH2­¢-Ala­OEt) were
prepared, where NN stands for 4,4,5,5-tetramethylimidazolin-1-
oxyl 3-oxide. Their nickel(II) perchlorate complexes with a
metal/ligand ratio of 1/2 were structurally and magnetically
characterized.

Spin-label techniques have been utilized for probing supra-
molecular environments especially in biological functional
systems,1 and spin-labeled lipids, nucleic acids, carbohydrates
as well as peptides have been exploited for that purpose.1,2 Spin-
labeled compounds also contribute to development of functional
magnetic materials as air-stable spin carriers.3,4 Amino acids are
known to be good chelating agents to transition-metal ions,5 and
some proteins and peptides, such as valinomycin, are known to
work as ionophores in biological systems.6 Nitroxide oxygen
atoms can ligate metal ions as well.7 In the present study, we have
developed novel amino acid spin labels, which turned out to be
oily, and we moved to characterization of them as crystalline
solids by complex formation with transition-metal ions.

The nitronyl nitroxide radical group (abbreviated as NN;
4,4,5,5-tetramethylimidazolin-1-oxyl 3-oxide)8 has been well
investigated, and the NN­CH2­ group could be substituted onto
the amino group using a precursory NN­CH2Cl reagent.9 We
supposed that ¡- and ¢-alanine derivatives would be a promising
prototype for paramagnetic amino acids and peptides. The
carboxylic acid moiety has been protected as an ester, and such
esters are commercially available. According to the literature
methods for NN­CH2-substituted azacrowns,10 substitution
reaction of L-Ala­OMe¢HCl with NN­CH2Cl was conducted
in acetonitrile in the presence ofK2CO3 and a catalytic amount of
KI. The mixture was purified through activated alumina column
chromatography eluted with dichloromethane/acetonitrile, giv-
ing NNCH2­L-Ala­OMe as a purple oily product in 53% yield
(Scheme 1). A similar reaction using ¢-Ala­OEt¢HCl afforded
purple oil of NNCH2­¢-Ala­OEt in 62% yield. They can be
stored in a refrigerator but slowly decompose in a few weeks.

They show major five lines in solution ESR with a relative
intensity of 1/2/3/2/1, each of which is split into a 1/2/1 triplet
(Figure 1). We assigned hyperfine splitting coupling constants in
toluene at room temperature, as follows: aN = 0.732mT and
aH = 0.170mT at g = 2.0066 for NNCH2­L-Ala­OMe, and
aN = 0.737mT and aH = 0.179mT at g = 2.0066 for NNCH2­
¢-Ala­OEt. Polar solvents made aN larger; aN = 0.800mT and
aH = 0.183mT at g = 2.0064 in water for NNCH2­L-Ala­OMe,

and aN = 0.805mT and aH = 0.180mT for NNCH2­¢-Ala­OEt.
Nitroxide ESR spectroscopy usually exhibits a solvent effect,1

which is interpreted in terms of the contribution of a canonical
structure of >N+●­O¹. Electro-spray ionization MS showed
molecular ion signals as base peaks at m/z 295.1 (M + Na+) for
the former and m/z 309.1 (M + Na+) for the latter.

Complexation reactions of NNCH2­L-Ala­OMe and
NNCH2­¢-Ala­OEt with Ni(ClO4)2 in dichloromethane­ethanol
gave red platelet crystals of [Ni(NNCH2­L-Ala­OMe)2]-
(ClO4)2¢1.5(CH2Cl2) (1) and red needles of [Ni(NNCH2­¢-
Ala­OEt)2](ClO4)2¢0.5(CH2Cl2) (2), respectively. Elemental
analysis indicated the metal/ligand ratio of 1/2.11 Other metal
ions could afford coordination compounds, but the nickel(II)
derivatives were suitable for X-ray crystallographic analysis.12

Each nickel ion (Figure 2) has an octahedral coordination
structure and each ligand plays the role of a tridentate mer
configured O,N,O-donor. The crystal of 1 is acentric in a
monoclinic P21 space group, and the absolute configuration of
(S)-alanine was confirmed by means of refining the Flack
parameter13 to a value of 0.13(3). A fused five-membered/
six-membered chelate system is found for each ligand. As for 2,
a similar double mer configuration can be found with a fused
six-/six-membered ring system. Each molecule is chiral, but
there is an enantiomer in each unit cell due to a P�1 space group.

The direct coordination was found between the radical
oxygen atom and the transition metal center (the ORad­Ni bond
lengths of 2.036(11) and 2.034(10)¡ for 1 and 2.010(7) and
2.025(5)¡ for 2). The ligating radical groups are located in a cis
manner, which may lead to a through-space radical­radical
exchange coupling. The ORad­Ni­ORad angles are 91.0(4) and
93.5(2)° for 1 and 2, respectively, and the through-space
ORad£ORad distances are 2.90(2) and 2.940(9)¡, respectively.

The magnetic susceptibilities of polycrystalline samples of 1
and 2 were measured on a SQUID magnetometer (Figure 3a).
The »mT value of 1 approached null around 20K on cooling.
This behavior was reproduced when we applied an enantiomeric
NNCH2­D-Ala­OMe to this system. In contrast, the »mT value
of 2 remained at 2K. An approximately isosceles triangular
model (Figure 3b) explains the behaviors of 1 and 2 under the
exchange-coupling conditions with «JNi­Rad« > «JRad­Rad« and
«JNi­Rad« < «JRad­Rad«, respectively. The parameters were estimat-Scheme 1. Synthetic scheme for NNCH2­amino acids.

Figure 1. ESR spectra of (a) NNCH2­L-Ala­OMe and (b) NNCH2­
¢-Ala­OEt in water at room temperature.
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ed to be JNi­Rad = ¹73(1)K and JRad­Rad = ¹68(5)K with
gavg = 2.1 (fixed)14 for 1 and JNi­Rad = ¹45.2(7) K and
JRad­Rad = ¹90(1)K with gavg = 2.132(5) for 2 from the
Heisenberg spin Hamiltonian H = ¹2JNi­Rad(S1¢S2 + S1¢S3) ¹
2JRad­RadS2¢S3.15 According to the magneto­structure relation-
ship between JNi­Rad and the Ni­O­N­C¡ torsion angle (º),7b

it is reasonable that the larger torsion of º = 24.5(13) and
32.9(15)° in 1 gave the larger «JNi­Rad«, in comparison with
º = 18.0(9) and 30.2(10)° in 2. The strong JRad­Rad interaction is
ascribed to the through-space overlap between the magnetic ³*
orbitals.16

In conclusion, we have prepared two amino acid spin labels,
and characterized their nickel(II) perchlorate complexes. These
labels seem to be promising agents for a spin-probe method in
biological systems as well as building blocks for bio-inspired
materials chemistry including chiral magnets.17
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(a) (b)

Figure 3. (a) Temperature dependence of »mT for 1 and 2. Solid
lines represent calculated curves. For the equation and parameters, see
the text. (b) An exchange model consisting of one SNi = 1 and two
SRad = 1/2 centers.

(a)

(b)

Figure 2. Molecular structures of (a) the [Ni(NNCH2­L-Ala­
OMe)2]2+ moiety in 1 and (b) the [Ni(NNCH2­¢-Ala­OEt)2]2+

moiety in 2. Thermal ellipsoids are drawn at the 50% probability
level. Hydrogen atoms are omitted for clarity. Structural formulas are
also shown.
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